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1. Introduction

The importance of three-dimensional printing techniques has
been increasing in the medical field [1]. Several applications are
now routinely used in facial surgery, including printed anatomical
models that are used for teaching and surgery planning [2] and
industrial printing of metallic objects to allow for prototyping of
personalized surgical guides and plates [3]. The main point of
interest in current applications for reconstructive surgery is better
precision, but the morbidity of donor sites remains the same as in
classical techniques.

Three-dimensional bioprinting is the combination of 3D
printing and tissue engineering. The potential therapeutic interest
in this type of 3D printing could change the face of reconstructive
surgery, increasing precision and suppressing the need for donor
site or immunosuppressive treatments.

We hereby describe the principles of bioprinting, its main
current limitations, and the exciting potential of this technique.

2. Methods

We performed a detailed literature search in the PubMed/
MEDLINE database of all publications in the English language up to
May 2018. The search terms used were ‘‘bioprinting AND facial
surgery’’, ‘‘bioprinting AND reconstructive surgery’’, ‘‘bioprinting
AND regenerative medicine’’. The abstracts were reviewed, and
pertinent publications were included. Supplementary references
were selected among the bibliographies of included articles. This
review was based on a total of 40 publications.

3. Discussion

3.1. Principles of tissue engineering

Tissue engineering is a branch of regenerative medicine
[4,5]. The aim of this discipline is to use the patient’s own cells
to create an autologous graft [6].

In the 90s, Robert Langer, a researcher in biotechnology, and
Joseph Vacanti, a pediatric surgeon, were at the origin of the term
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A B S T R A C T

Conventional three-dimensional (3D) printing techniques have been growing in importance in the field of

reconstructive surgery. Three-dimensional bioprinting is the adaptation of 3D printing techniques to

tissue engineering, through the use of a bio-ink containing living cells and biomaterials. We hereby

describe the principles of bioprinting, its main current limitations, and the prospects of this technique. A

PubMed/MEDLINE search was performed. A total of 40 publications were included. To date, most of the

tissues have been printed with promising results in vitro (e.g., skin, cartilage, and muscle). The first animal

studies are promising for small-scale defects. Vascularization issues are the main limitation to printing

large constructs. Once the barrier of vascularization is overcome, printing organs and composite tissues of

any size could be possible, opening the doors for personalized medicine based on medical imaging.

Printing custom-made autologous grafts or flaps could minimize donor site morbidity and maximize the

morphological results. Considering the potential future applications of bioprinting in the field of

reconstructive surgery, one has to be aware of this tool, which could drastically change our practice.
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tissue engineering. They described it as ‘‘an interdisciplinary field
that applies the principles of engineering and life sciences toward
the development of biological substitutes that restore, maintain, or
improve tissue function or a whole organ’’ [7].

The three pillars of tissue engineering are cells, scaffold, and
signals (growth factors). The success of in vitro tissue culture is
judged on self-synthesis of the matrix and multiplication of cells.

There has been major advancement in tissue engineering
techniques in the field of skin substitutes. Today, skin substitutes
are obtained in vitro from the culture of keratinocytes, issued from
a small skin biopsy. After 4 to 6 weeks of culture, the autologous
epidermal sheets can be grafted. This has changed the manage-
ment of severe extended burns [8].

Unfortunately, this type of in vitro substitute is not available for
other tissues. For instance, in the field of bone reconstruction,
autologous full-thickness grafts (cortical or cancellous bone) are
harvested directly from the patient [9]. Xenografts and synthetic
biomaterials might be suitable for small bone defects. Neverthe-
less, autologous grafts are still considered the gold standard for
medium or large defects, responsible for donor site morbidity [10].

3.2. Concept of 3D bioprinting

Three-dimensional bioprinting is the use of 3D printing
techniques for tissue engineering. Murphy and Atala described
3D bioprinting as ‘‘layer-by-layer precise positioning of biological
materials, biochemicals and living cells, with spatial control of the
placement of functional components (extracellular matrix, cells
and pre-organized microvessels) to fabricate 3D structures’’ [11].

Classic 3D printers are adapted to receive cellular inks. Printers
can be based on inkjet deposition, laser-assisted desorption, or
microextrusion (Fig. 1).

The cells are either differentiated cells or stem cells [12]. They
are integrated in a fluidic biomaterial (synthetic or natural
polymers) to form what is called a bio-ink.

Computer-aided design and computer-aided manufacturing
(CAD-CAM) tools are used for controlling both the pattern of layer-
by-layer deposition (microarchitecture) and the overall shape
(macroarchitecture) of the object to be printed [13]. The CAD-CAM
step can be based on medical imaging (such as computed
tomography) and involves image segmentation and mesh genera-
tion [14].

The printing step (Fig. 2) is similar to classical 3D printing but
needs a high control of printing parameters to guarantee both the
suitable rheology of the ink and the survival of the cells [15]
(viscosity, speed of extrusion, and temperature of the extruder,

temperature of the seal, and temperature of the plate receiving the
object).

Once printed, the final object is kept under specific conditions
inside an incubator and will go through a maturation step
consisting of regular addition of growth factors and daily culture
medium supply. Some authors described time as a fourth
dimension, leading to the term 4D bioprinting [16].

The success of the process is judged on the survival of cells and
their ability to synthetize their extracellular matrix.

The enhanced control of microarchitecture is the main interest
of bioprinting compared with classical tissue engineering [17]. In-
deed, in bioprinted samples, the cells and the particles are spread
with a uniform distribution, whereas classical deposition leads to
accumulation of cells and particles in the bottom of the sample due
to gravity [18].

3.3. State of the art

Multiple laboratories have been working on the development of
3D bioprinting. Both academic and industrial teams are involved in
research on this topic.

Every type of tissue has been studied in vitro through small size
constructs [12,19].

Every cell type was tested (differentiating cells and stem cells)
[17]. A cell type can be used on its own in association with other
cell types.

A very high number of bio-inks were tested, usually by mixing
resorbable and nonresorbable biomaterials [20]. A broad spectrum
of polymers can be used to compose bio-ink [21]. The main natural
polymers are alginate, hyaluronic acid, silk fibroin, collagen, and
gelatin [22–24]. The main synthetic polymers are polylactide-co-
glycolide, polyethylene glycol, poly-L-lactic acid, and polycapro-
lactone [25].

Intercellular signals such as specific growth factors (bone
morphogenetic protein or vascular endothelial growth factor, for
instance) can be added during the preparation of the bio-ink [26].

The most promising in vitro results concern the printing of skin
tissues [27,28]. Full-thickness printed skin is obtained after 21 days
of maturation using fibroblasts and keratinocytes, whereas 45 days
were needed using traditional tissue engineering [24].

The first animal studies have already been launched for several
types of applications [29].The constructs can either be printed first
and implanted in a second phase [30] or printed directly on the
animal.

Owens et al. [31] bioprinted a synthetic nerve graft composed of
Schwann cell tubes and bone marrow stem cells subsequently
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Fig. 1. Example of micro-extrusion bioprinter at work.
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implanted in rats for sciatic nerve repair. Motor and sensitive
electrophysiological testing as well as histological findings showed
results similar to autologous grafts.

Keriquel et al. [32] used in vivo bioprinting in a preliminary
study to create hydroxyapatite-based constructs directly in
calvarial bone defects on mice, in the perspective of custom-made
robotic surgery.

Michael et al. [33] engineered cellularized skin substitutes
containing keratinocytes via laser-assisted bioprinting. These
substitutes were transplanted into full-thickness skin defects in
mice, resulting in migration of fibroblasts, blood vessel formation,
and collagen production.

Laronda et al. [34] used additive manufacturing in surgically
sterilized mice by printing microporous hydrogel scaffolds of
15 � 15 mm in which mouse follicles were inserted. Follicle-
seeded scaffolds were implanted and became highly vascularized
and ovarian function was fully restored. Moreover, pups were born
through natural mating and thrive through maternal lactation.

One has to be careful with interpretation of animal studies
measuring healing after implantation of a printed construct.
Indeed, characterization of natural healing versus benefit related
strictly to printed tissue is hard to highlight in small tissue defects.
To date, considering the technical limitations for large scale
constructs printing, there have been no human studies.

The promises of bioprinting are well illustrated by the number
of publications growing quickly year after year. The first field-
specific journal was launched in 2015 (International Journal of

Bioprinting). Four other journals dedicated to bioprinting were
launched in 2016 [35]. Another indicator of the dynamism of
research about bioprinting is the economic trend. Financial
forecasts estimate that the 3D bioprinting market will reach
$1.3 billion by 2021 [36].

3.4. Limits

One of the main limitations of bioprinting is the lack of a
consensus because of the very high number of parameters
[30]. There are so many options in bio-ink composition (cells
and biomaterials), printing conditions (printer type, temperature,

oxygen rate, speed of deposition), and maturation procedure
(signals and bioreactors) that defining a gold standard for each
tissue is a very hard task.

Vascularization of the printed tissues is another challenge
[37,38]. The overall outcome of engineered tissue implants
depends on the success of microvessel formation, maturation,
and patterning [39]. To survive, a cell must be close to the source of
nutrients (blood circulation) by a distance less than 400 mm
[30,40]. This is the reason why one cannot print living pieces of
tissue larger than 1-mm thick. Zhang et al succeeded in printing
small-caliber tubes similar to blood vessels containing endothelial
cells [41]. Nevertheless, integrating a full vascular network (from
large vessels to capillaries) into the printed tissues is still
impossible using current techniques.

3.5. Prospects

Once the limit of vascularization is overcome, printing organs
and composite tissues of any size could be possible, opening the
doors for personalized medicine.

Two main applications are targeted: in vitro cellular and tissue
models and tissue engineering constructs for in vivo implantation.

The number of clinical and in vitro applications would be of a
paramount scale. In vitro drug tolerance testing would be of a high
effectiveness with printing of specific functional tissues
[16,29]. Models of pathologic tissues could also be printed to test
the efficacy of specific drugs [42]. Printing large functional models
would be of a great help for teaching surgery. As simulation on
synthetic models is being integrated into medical and surgical
education, [43] training on living functional models would permit
work in conditions very close to reality.

Most of all, reconstructive surgery would be highly optimized
with printed composite tissues [44]. Instead of harvesting a large
free flap, only a small biopsy of each type of cells would be
necessary, with a great improvement on donor site morbidity [45].

The ideal flap for the patient’s tissue defect would be designed
from medical imaging (magnetic resonance imaging and computed
tomography for deep defects, stereophotogrammetry for superfi-
cial defects) after numerical simulation of surgical procedure.

[(Fig._2)TD$FIG]

Fig. 2. The process of bioprinting is divided into three main steps: 1/ Pre-processing (generation of the mesh and preparation of the bioink) ; 2/ Processing (printing of the 3D

object), 3/ Post-processing (maturation of the printed construct and transformation into a functional tissue).
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After mixing the patients’ cells and biomaterials, the autologous
free flap would be printed, including a vascular network connected
to the main vascular pedicle placed on demand.

In this way, we could imagine a 2-step management for patients
waiting for a reconstructive procedure. In a first 1-day appoint-
ment, the patient would have multiple biopsies under local
anesthesia and would have a reference imaging. The custom-made
free flap could then be printed and disposed in a bioreactor. A few
weeks later, once the flap is functional, the surgery to implant the
free flap could be performed.

In the same way, autologous organs could be printed, with no
need to wait for a donor and no indication for immunosuppressive
medication. It would also put an end to illegal trade in human
organs.

In the specific situation of face transplantation, this would be of
a major benefit to resolve the identity issue by creating a graft
similar to the original face.

Considering that the medical profession is aiming toward
personalized treatments and that social and technological
evolutions are responsible for a decrease in the number of organ
donors due to the reduction in accidental deaths, [46] 3D
bioprinting might be a very promising solution.

In a more distant but considered ineluctable future, years’-long
outer space travel will be the theatre of complex surgery in
confined environments where no available tissue or organ donors
will be found. This is actually a priority for all space agencies, and
programs are already targeting this challenge, such as the Vascular
Tissue Challenge launched by NASA in 2016 [47].

Once the current technical limitation of vascularization is
solved to make ‘‘organ printing’’ possible for medical use,
regulatory and socio-ethical issues might appear. These issues
were recently highlighted by an official report from the European
Parliament [48].

The emerging applications of bioprinting are ‘‘difficult to fit into
current legislative pillars or categories. Moreover, one of the key
challenges in regulating additive manufacturing is acknowledge-
ment of the fact that biological and non-biological materials are
regulated in different ways.’’

One of the main ethical concerns is that bioprinting ‘‘is a costly
procedure that is available mostly to those who can afford such
treatment. The high cost of the bio-printing manufacturing process
and the required production capacity raise social and distributive
justice questions and issues of fair or equal access given also the
highly individualised character of the products’’. Moreover,
bioprinting ‘‘might be (mis-)used to improve organs by adding
functions or interbreeding human cells with those of animals to
give the patient a competitive edge over other individuals’’.

These legal and socio-ethical challenges must be anticipated in
order to get the best out of bioprinting.

4. Conclusions

Both technological and social evolutions are aiming at
regenerative medicine and personalized treatments. The current
techniques of facial plastic and reconstructive surgery are still
perfectible in terms of morphological results and donor site
morbidity. When the current limitations are overcome, 3D
bioprinting could be key for these issues. Considering the potential
future applications of bioprinting in the field of reconstructive
surgery, one has to be aware of this tool, which could drastically
change our practice.
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